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Hybrid Electrochemistry-Advanced Combustion for
High Efficiency Distributed Power

Sotirios Mamalis, Stony Brook University

Project Vision:

Design a hybrid SOFC-IC engine system and optimize the BOP
components for 70%+ system efficiency. Key developments: high pressure
stack and spark-ignition engine that uses anode tailgas as the fuel.
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Project Overview 20 e,

Team member Location Role in project

Demonstrate advanced combustion with tailgas,

Stony Brook Stony Brook, NY design multi-cylinder engine, model hybrid

Jniversity system for design
Develop high pressure SOFC stack, provide
Nexceris Lewis Center, OH | stack boundary conditions and tailgas

composition

Fabricate multi-cylinder engine and demonstrate
Czero Fort Collins, CO its capability to operate in a low temperature
combustion mode

Brookhaven Hybrid system thermal integration and
) Upton, NY :
National Laboratory component selection

Context/history of project
New collaboration in the INTEGRATE framework
All groups have previous involvement with ARPA-E
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Innovation and Objectives

Innovation
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Combination of high pressure SOFC
with internal combustion engine. How?

Task outline, technical objectives
« Co-develop a pressure tolerant SOFC

and a spark-ignition engine to use the
tailgas as fuel

* Model and conceptually design a
hybrid system for 100 kWe power
output and maximum efficiency

Tech-to-Market objectives

« Target markets for continuous,
distributed power generation

« Early adopters: data centers, remote
building main power, military sites with

logistically available fuels

« SOFC manufacturing dominant

challenge, additional components

already available




Stack Performance Mapping
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« Mapping based on model validated by experimental data

» Objective: understand stack performance over a range of operating conditions in
order to maximize the tailgas energy content without sacrificing efficiency
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Seal Material Development and Validation
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* Objective: 10X improvement in stack sealing capability, compared to current
baseline seals, demonstrated via offline testing with target leak rate of < 0.05%

* Nexceris’ ambient pressure offline seal testing apparatus shown above
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Seal Material Development and Validation
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« Data comparing new seal configuration to Nexceris’ original composite seal: leak

Current Composite Seal . "
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rates near the target after 10 thermal cycles (offline seal testing)

800

« Modifications to seal configuration enabled long-term stability in relevant “operating
cell” environment

* The experimental setup has been modified and validated for testing at elevated

pressure



Engine Displacement Study

Baseline tailgas composition:

Water-49.6%-(H2+CO)

12
17.1% H,
7.9% CO 0k
25.4% CO,
49.6% H,0 ol

* Engine displacement calculations
are based on 49.6% of water
vapor content

* Displacement is reduced as the
engine speed is increased

Engine Displacement (L)
»

* Increasing the equivalence ratio
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: 2
also decreases engine
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. . 0
* HCCI combustion mode requires 500

larger engine displacement than
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Engine Experimental Testing
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* Engine experimental testing in SI mode with dry tailgas showed good
combustion characteristics, load, and net indicated efficiency

* Low CO (20 — 50 g/kg fuel) and low NOx (0.2 — 1 g/kg fuel)
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Effects of H,O Content in Tailgas

Net-Indicated Fuel Conversion Efficiency vs ¢
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* Experimental testing with water addition showed that the extra dilution resulted
in reduced heat release, work production, and efficiency

* Also lower cylinder temperatures and NOx emissions at the expense of

combustion efficiency
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Hybrid System Modeling
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Market Applications

« Potentially attractive markets and applications:
« Power for data centers
« Remote building continuous or backup power (start-up time?)
« Military applications for remote power with logistically available fuels
« Long-haul trucks

* Requirements:
« High efficiency and low emissions
« Reasonable capital cost
« Reliability and low operating cost
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Risks

« Design of heat exchanger systems for the cathode and anode
« Mitigation: modeling and analysis to understand boundary conditions for
heat exchangers, effectiveness, and associated cost

« Complexity of hybrid system to maximize efficiency
« Mitigation: perform detailed system modeling and analysis to understand
the trade-off between component complexity and overall efficiency
« Validate modeling components against experimental data

« Economics of hybrid system
« Mitigation: analyze the trade-off between component design, complexity,
and capital/operating cost
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Thank youl!
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